
JAPANESE APL LANGUAGE SYSTEM ON IBM MULTISTATION 5550

M. Udo, Y.Akimoto, S.Kaneko, T.Sanuki (*)
and M.Alfonseca (**)

(*) Tokyo Scientific Center,
Science Institute, IBM Japan, Ltd.

5-19, Samban-cho, Chiyoda-ku, Tokyo, Japan
(**) IBM Madrid Scientific Center
P. Castellana, 4. Madrid-l, Spain

ABSTRACT

This paper exemplifies the national language support

of a programming language by describing the imple-

mentation of APL with a language facility for proc-

essing Japanese characters: that is, a character set

that has "wide" characters that occupy space of more

than one byte. By national language support, in

this paper, we mean that users are enabled to use

their own national language in the data, as legal

character strings of the programming language. We

describe the implementation of APL that provides

Japanese language support in the above sense on a
personal computer called the IBM Multistation 5550.

We also discuss the design principle adopted to

include a new two-byte character set in APL data

objects coexisting with a conventional one-byte APL

character set.

1. INTRODUCTION

It is desirable, or now becoming to be requisite,

that users be able to use their own national lan-

guages in programming languages: for example, in

data, identifiers, and messages [l]. But to accommo-

Permission to copy without fee all or part of this material is granted
providedthatthe copies are not made or distributed for direct
commercial advantage, the copyright notice andthetitle ofthe
publication and its date appear,and notice is giventhatcopyingis by
permission of The British Infonnatics Society Limited. To copy
otherwise,orto republish requires specific permission.

date national languages other than occidental lan-

guages, such as Arabic, Chinese, Japanese and so on,

programming languages should remove the present

256-character limitation that confines legitimate

characters to traditional alphanumerics.

The Japanese characters consist of several thousands

of ideographic characters (Kanji), adapted from Chi-

nese, as well as two Japanese phonetic alphabets,

Ksna (Hira-kana and Kata-kana). Each of the Kana

character sets consists of 46 different symbols,

each expressing a simple sound of the Japanese syl-

labary, with the addition of some diacritical marks

and subscripted symbols. In the Japanese writing

system we use a mixture of Kanji and Kana, where Kan-
ji is used as the root words and Kana as inflections

for most purposes, as well as Arabic numbers and

Roman alphabets.

Because of this complexity, we have had no reason-

able way to type our own language, especially Kanji

characters. In recent years, the use of Kanji in

computers has greatly increased because of a break-

through in Kanji typing methods: that is, a phonetic

or Kana-to-Kanji conversion [2]. It permits the

user to key a phonetic spelling from a standard

typewriter keyboard using Ksna, for which the com-

puter supplies the corresponding Kanji character by

looking up the Kanji dictionary stored in a disk-

ette.

The IBM Multistation 5550 is a personal computer

equipped with the Kana-to-Kanji conversion method

for Kanji input in the keyboard BIOS, as well as the

Kanji output functions to the screen and printer

[31*

M. Udo 326 Japanese APL Language System

We implemented the APL system on the 5550, based on

the IBM PC APL developed by the IBM Madrid Scientif-

ic Center [4], aiming at the Japanese national lan-

guage support, which had been strongly required by

mainframe APL users because of their need for busi-

ness applications.

Our basic idea is that a Japanese character should

be dealt with as a single character scalar in APL,

even if it needs two bytes for encoding in memory.

To implement this, we had to extend the PC APL inter-

preter so that a new data type for the Japanese char-

acters could be incorporated in the system, which we

now call "Japanese APL". At the same time, to take

advantage of the valuable Kanji I/O functions of the

5550 DOS/BIOS, we developed the supervisor and aux-

iliary processors for Japanese APL.

Japanese APL on IBM Hultistation 5550 was announced

by IBM Japan and has been available to customers

since December 1984.

In the remaining sections of this paper, we first

describe the coding scheme of the Japanese charac-

ters and the design principle to include them in

APL. Then we describe an implementation of the Japa-

nese APL on 5550, with emphasis on the issues we

solved based on the design principles in each compo-

nent of the system: the APL supervisor, interpret-

er, and auxiliary processors. Finally 110

operations with the Japanese characters are dis-

cussed in terms of the difficulty encountered when

they are mixed with alphanumeric characters.

2. CODING SCHEME OF THE JAPANESE CHARACTERS

A two-byte coding scheme, in which each letter would

be identified by two successive bytes, would yield

256 by 256, or 65,536, possible codes. We use the

following notation to show a two-byte code:

]DlD2]

There exist two representative coding schemes for

the Japanese characters:

. IBM Kanji Code : an extension of EBCDIC

. Shift JIS Code : an extension of ASCII

The former is used on mainframes while the latter is

used on personal computers; IBM 5550 is architec-

turally based on the latter, where the range of Dl is

X181'-X'9F' and X'EO'-X'FC', and the range of D2 is

X140'-X'FC' except X'7F'. Therefore the valid two-

byte codes are shown in Fig.1 as the points in rec-

tangles. There are 11,280 possible two-byte codes

that can be handled by this coding scheme, in addi-

tion to the remaining 196 one-byte codes.

The characteristic of this scheme is that the range

of Dl is reserved for the first byte of two-byte

codes in a one-byte code table as shown in Fig.2.

Then to encode a mixed string of one-byte and

two-byte codes, no special control character is

needed, such as Shift-In or Shift-Out on the main-

frame.

SECOND BYTE OF TWO-BYTE CHARACTER I

where Dl and D2 are the first and the second byte

values, respectively, in hexadecimal representation

of the two-byte code.

M. Udo 327 Japanese APL Language System

Figure 1. Valid Two-Byte Codes of IBM 5550

For example, 'S$zApL' ('ni-hon-go-APL') is

encoded on 5550 as:

X'93FA967B8CEA41504C1

that can be easily interpreted by software as:

-- v---

El $ s A P L

(nil (bon) (go)

because X193', X196', and X'8C' are valid first

bytes of Kanji, but X141', X150', and X'4C' are not.

The Japanese APL uses this coding scheme as the

external representation of characters: i.e. key-

board input codes, records in DOS files, output

string to the screen and printers.

3. DESIGN PRINCIPLES OF JAPANESE APL

To introduce the Japanese characters into APL, we

adopted the following three principles;

1. A Japanese character, even if it is encoded by

Bit 4 - 7

Mesh pattern area represents the first
byte of two-byte code character.

Figure 2. One-Byte Codes of IBM 5550

M. Udo

two bytes, should be a character scalar, not a

two-element character vector.

2. Japanese characters should be supported as ele-

ments of a literal constant: i.e. a character

vector notation represented by a list of charac-

ters enclosed with quotes as follows:

A+ 'S&s' (Japanese characters only)

B+'EfzAPL' (a mixture of Japanese and APL)

3. Any APL primitive function defined on character

arrays should be applicable to arrays that

include Japanese characters as well; e.g.

'A'='El*SAPL'
000100
o 1 o ;~';'Ei+%APL'

6
p'El&ZAPL'

_ _-

To maintain the standard of the APL Language, we did

not introduce any new primitive function or system

function to manipulate Japanese characters specif-

ically.

The most significant design choice was, according to

the first principle, whether a Japanese character

should be handled as:

. a two-element character vector, consisting of

two successive one-byte characters

or

. a character scalar, even though it has to be

coded by two bytes.

If we had selected the former, the APL interpreter

need not have been modified; because 1) the charac-

ter set remains as collection of all-possible 256

one-byte codes and 2) users identify the Japanese

characters in a sequence of one-byte codes. In this
case, Japanese characters are encoded by a

"byte-wise representation" in memory, e.g.

93 FA 96 7B 8C EA 41 50 4C

--- ---

El $ $j A P L

328 Japanese APL Language System

But we selected the latter. We extended the APL

interpreter by adding a new data type for Japanese

characters to the current four internal data types:

boolean, integer, floating point, and one-byte char-

acter. The extended interpreter identifies Japanese

characters as legitimate elements of an extended

character set consisting of 256 APL characters and

11,280 Japanese characters. In this case, Japanese

characters are encoded by a "word-wise represen-

tation" in memory: e.g.

93FA 967B 8CEA 4100 5000 4CO0

8$.?%A P L

The rationales for our selection are as follows:

1. To preserve the applicability of primitive func-

tions, and hence idioms.

The difference of the data shape between scalar

and vector severely affects the applicability of

primitive functions. If we handle a Japanese

character as a two-element vector,

can not be applied because of a LENGTH ERROR.

But if a Japanese character is a character sca-

lar, the above statement becomes valid and the

following idiom that deletes the specified char-

acter Y in the character vector X can be applied

without caring whether either X or Y includes

Japanese characters or not, as follows:

2. To avoid the disruption of the pairing of two

successive codes of a Japanese character.

The sequence of codes in a pair of the first and

the second byte of a Japanese character is not

commutative.

JECIEA) defines s('go')

M. Udo 329

but

IEAISC(defines @('yu')

The APL language has so many primitive functions

to rearrange the structure of data: Reshape,

Ravel, Reverse, Rotate, Catenate, Transpose,

Take, Drop, Indexing, and so on. The sequence of

codes representing Japanese characters has to be

exposed to these functions. If we handle a

Japanese character as a two-element character

vector, the pairing of codes is easily broken

apart.

u (4Cl501411EAl8C17B196IFA1931

L P A !i% { @

while if we use an extended character set,

* ~4C00~5000~4100~6CEA~967B~93FAj
m----m

L P A S&El

3. To avoid the code conflict in the range of the

secondbyte of a Japanese character.

As shown in Fig.1 and Fig-Z, the valid D2 range

(X140'-X'FC' except X'7F') overlaps most of the

one-byte APL characters, even with the range of

Dl. This conflict causes the following problems

if a Japanese character is handled as just a

two-byte sequence of one-byte codes.

‘H$ZAPL’ E ‘C’
* 193lFA19617BlSC(EAl41~50(4CI E 17BI

5 i ‘El$ZAPL’
- 5 J, 1931FAl96

+.-+ JEA(4115014CI

%z LP

Japanese APL Language System

To resolve these problems in the scheme that a

Japanese character is a two-element vector,

users have to check each byte in the target

string to find whether it is the second byte of a

Japanese character or a one-byte APL character.

This would overburden APL programs. On the oth-

er hand, in the scheme that a Japanese character

is a scalar, users need not care about the codes

of any characters.

‘EliGmPL’ E ‘{I
* ~93FA~967B~8CEA~4100~5000~4C00~ E 17BI

0 -0 0 0 0

5 j. 'H&ZAPL'
c--) 5 1 193FAl967Bl8CEA

- 14Cl

-

L

4. IMPLEMENTATION

To realize the Japanese language support, following

the design principles described above, we imple-

mented the APL system the IBM Multistation 5550,

based on the IBM PC APL.

The modules of the IBM PC APL are well organized in

three different parts: 1) APL supervisor, 2) APL

interpreter, and 3) Auxiliary processors. Based on

this, we developed the Japanese APL on 5550 as fol-

lows.

4.1 APL Supervisor

The APL supervisor is the machine-dependent inter-

face between the APL interpreter and the DOS operat-

ing system that manages connection, initialization,

and disconnection. The main functions are 1) I/O

from the keyboard, display, and printer, and 2) file

management. To enable I/O of Japanese characters,

we developed a new APL supervisor in Macro Assembler

using 5550 DOS/BIOS interrupts. When developing the

modules, we had to solve the following issues:

M. Udo 330

1. the APL character code assignment and fonts

The 5550 BIOS for screen-video I/O and printer

I/O uses the code table defined in Fig. 1 and

Fig. 2 to display or print a character. As for

one-byte codes in Fig. 2, there is no room to add

APL characters in the table. We decided to

replace the one-byte Kata-kana characters

located at X'Al' through X'DF' by the APL char-

acters, as shown in Fig. 3, considering that

there also exists the code conflict between APL

and one-byte Kata-kana characters even on the

mainframes.

on 5550, the data of character fonts are not

stored in the ROM but, fortunately, they are

loaded into an area of the read/write memory at

system initialization time. Once loaded, there-

fore, user programs can define other character

fonts even in text mode. The APL supervisor

replaces the fonts of one-byte Kata-kana charac-

ters by APL fonts when APL is invoked by DOS and

restores them when it exits to DOS.

An APL system must provide the atomic vector

(IIAV) containing all 256 possible characters,

ordered by ascending value of their binary rep-

resentation in the system. We arranged the

characters in the atomic vector as shown in Fig.

4, maintaining compatibility with IBM PC APL.

The supervisor translates a code between the

outside and inside of the APL system, as shown

in the following example;

Ah' EI * z A P L'
---- ------

outside 41 DE 27 93 FA 96 7B BC EA 41 50 4C 27

inside 3E 01 86 B3 DA B6 FB AB CA 3E 4D 49 88

based on the tables in Fig. 3 and 4.

2. the screen management

Japanese characters are physically twice as

“wide” on the screen as the alphanumeric charac-

ters, for they need a 24-by 24- and 24-by

12-pixel font respectively. Therefore the 5550

Japanese APL Language System

screen can display 25 lines of 40 Japanese char-

acters, or 25 lines of 80 alphanumerics. But

since the 25th (bottom) line is reserved by the

BIOS, user programs are allowed to use only 24

lines.

It might not be a coincidence that there exists

a one-to-one correspondence between the number

of bytes of a string in a text buffer and that of

columns on the screen to display it. In other

words, a two-byte character in the memory is a

two-column character on the screen, and a

one-byte character is a one-column character, of

course.

9 bytes in memory 93 FA 96 7B 8C EA 41 50 4C

9 columns on screen S APL

Just as a mixture of two- and one-byte charac-

ters in memory, so amixture of two- and one-co-

lumn characters on screen causes the screen

management complex: 1) never to insert a char-

acter into the middle of a two-column character,

2) never to delete the second column (the right

half of a Japanese character) only, or to delete

both columns if the first column (the left half

of a Japanese character) is deleted, 3) the

movement of a cursor must be controlled not to

be located on the second column of a Japanese

character, and so on. The APL supervisor takes

care of all the above. It also supports print-

ing the line just displayed on the screen as a

session-log, i.e. echo printing. The combina-

tion of the Ctrl- and PrtSc-keys controls the

echo printing mode.

4.2 APL interpreter

The Japanese APL interpreter enhances the PC APL

interpreter version 1.0 to include:

1. A new data type: two-byte characters, according

to the Japanese character support proposed in

Bit 4 - 7

Mesh pattern area represents the first
byte of two-byte code character.

Figure 3. APL I/O Interface Codes

Bit 4 - 7

M

I
0

Y
%-I
m

Mesh pattern area represents the first
byte of two-byte code character.

Figure 4. APL Internal Codes

M. Udo 331 Japanese APL Language System

the previous chapter (Design principles)
B3DA B6FB ABCA 3EOO 4DOO 4900

2. some other improvements and extensions, such as

the maximum number of elements in APL objects of

about 64K.

There exist several implementation methods for the

internal representation of texts consisting of a

mixture of two- and one-byte characters, such as the

Japanese characters and alphanumerics [5]. One of

the typical methods, mostly used on mainframes, is

to separate two different character sets by the

Shift-Out (X'OE') and Shift-In (X'OF') codes as fol-

lows:

QE 4562 4566 487E OF Cl D7 D3

where characters are coded using the IBM Kanji Code.

It seems difficult for APL to adopt this method as

the internal representation, for APL treats data

with any shape. What would happen if a user makes a

3-by-2 matrix from the above text vector?

On most personal computers, as the Shift JIS Code is

used, the byte-wise representation shown below is

efficient enough to store a mixed string in memory:

B3 DA B6 FB AB CA 3E 4D 49

because a shift code is, so to speak, embedded in the

first byte of each character. But this method is

also difficult for APL to adopt, because the Japa-

nese APL wants to process both two- and one-byte

characters in a uniform way: i.e., each may be a

scalar.

We adopted the word-wise representation to store a

character data object that includes Japanese charac-

ters in a workspace. In this form, a byte-character

is normalized to a word-character (two bytes) by

appending a byte value X'OO' as follows;

s&%A P L

Consequently, the Japanese APL interpreter has two

types of characters, just like two types of numbers,

i. e. integer and floating point, in a conventional

APL system. Figure 5 shows the internal data format

for an APL data object, where the data type of a

word-character has been added to support the Japa-

nese character set.

All the primitive functions and system functions

applicable to character objects were enhanced so as

to be applicable to word-character objects as well.

These new word-characters are also accepted as an

element of in-line comments in defined functions,

but not allowed in the names of variables, defined

functions, and workspaces. The enhancement of the

APL interpreter was first done to the IAPL inter-

preter written in IL (Intermediate Language) [4],

and second, it was compiled into 8086 Macro Assem-

bler codes.

We have to mention the output format of a

mixed-character array. When a character array con-

- DATA -

I
pointer

length
of

object

number of-
element

L rank of data
0 : scalar
1 : vector

. . .
data type

0 : boolean
1 : integer
2 : floating point
3 : byte-character
4 : word-character

Figure 5. APL Data Format

bit/element)
bytes/element)
bytes/element)
byte/element)
bytes/element)

Japanese APL Language System

sists of Japanese characters (i.e. two-column char- the number of columns or the number of bytes neces-
acters) and alphanumerics (i.e. one-column sary to output the following mixed string A;
characters), the APL interpreter formats it as fol-

lows and pass it to the supervisor, which physically A - B3DA B6FB ABCA 3EOO 4DOO 4900

displays it on the screen. ------

Hzf;sAPL

2 3P'H$SAPL' , 2 3p'B$SAPL' A simple solution is to write a defined function:

e. g. j

VLENGTH [fl] V
[O] Z+LENGM R

IIll Zt(pR)+-t/ZXi<~AV~R R R: Character Vector

If all the elements in a column are representable as that returns the value 9 when applied to A. It means

one-column (one-byte) characters, the output editor that the number of elements of A is six but A

displays them as a single column; otherwise, the includes three two-byte or two-column characters, so

whole column is displayed double-width, so as to that three additional bytes or columns are needed to

maintain column alignment of APL objects. print out, to display, or to write the whole string

A. But we needed a more efficient solution from the

point of view of performance.

5. I/O OPERATIONS

For users to perform peripheral I/O operations from

an APL workspace, the 5550 Japanese APL provides the

following auxiliary processors (AP);

AP80 : Printer control,

AP205 : Full-screen display management,

AP210 : DOS file management,

AP232 : Asynchronous communications,

AP555 : Kanji data conversion,

APlOO : BIOS/DOS interrupt handling, and

AP440 : Music generator.

The first five auxiliary processors have been exten-

sively enhanced to support Kanji data so that users

can easily develop their own Kanji application pro-

grams by using a full-screen, printer, DOS files,

etc.

We describe here, not the functions performed by

these APs, but the issues which arose from the han-

dling of two-byte or two-column characters. A com-

mon problem to the I/O for printer, screen, file,

and asynchronous communication was how to measure

There is a convenient correspondence between the

number of elements (P) and the number of bytes on

columns for alphanumerics. This implicit rule is

very efficient for programmers who have to do phys-

ical I/O operations using some APs. As we mentioned

in the previous chapter, that correspondence could

be maintained even in a mixed string A if it had been

expressed by the byte-wise representation;

A - B3 DA B6 FB AB CA 3E 4D 49

Since this is not the case, we decided to implement

an auxiliary processor, AP555, that performs charac-

ter data type conversion from word-wise represen-

tation (or word-character) to byte-wise

representation (or byte-character), and vice versa

as shown in Fig. 6. It also provides some other

functions, such as:

1. Providing the data type (type 3 or type 4) of the

character vector and the length in bytes if it

is type 4.

M. Udo 333 Japanese APL Language System

2. Mapping between word-characters and the corre-

sponding sequence numbers defined by the Shift

JIS Code table.

Now a programmer who wants to write an 80-byte long

record can use a popular idiom;

80 f A

We hope the approach we adopted for the national

language support in 5550 APL will be applicable to

other languages that also need "wide" characters on

the 5550, such as the Chinese and Korean languages,

and in the near future, we will be able to realize

the concurrent multi-national language support on

personal computers.

after converting A from type 4 to type 3.
REFERENCES

6. CONCLUDING REMARKS

After observing the user experience of one year in

programming the Japanese APL on 5550 since the first

shipment to customers in December 1984, we believe

that our APL implementation supporting the Japanese

characters is well accepted, and users are going to

enlarge their Kanji applications on 5550. Further-

more, we announced the Japanese APL Version 2.0 last

September, which runs on a variety of Japanese per-

sonal computers such as 5550, 5540, 5560, and JK.

APLZ, on the other hand, has implemented the concept

of extended characters for DBCS (Double-Byte Charac-

ter Set) support, such as Kanji, in the mainframe

environment 161. Its aim is supporting multi-na-

tional languages simultaneously, while the Japanese

APL supports only Japanese.

Type = 4: word-wise representation

Type = 3 : byte-wise representation
I I I

PTR NB NELM TY RA DIM1 El * z$A

20 9 31 9 B3 DA B6 FB AB CA 3E

[l] SigAPL Workshop on Character Sets and Keyboards

(Asilomar, 1985-2-11 / 14), APL Quote Quad,

Vol.15 No.3, March 1985

[2] J. D. Becker, Multilingual Word Processing,

Scientific American, Vol.251 No-l, July 1984,

pp.96-107

[3] R. Willis, Big Blue Goes Japanese, BYTE, Vol.8

No.ll, November 1983, pp.144-163

[4] M. L. Tavera, M. Alfonseca, and J. Rojas, An

APL system for the IBM Personal Computer, IBM

Systems Journal, Vol.24 No-l, 1985, pp.61-70

[5] K. Ushijima, T. Kurosaka, and K. Yoshida,

SNOBOL4 with Japanese Text Processing Facility

- Experience in Implementing a Programming Lan-

guage for Handling the Large Character Set -,

Proceedings of ICTP '83, October 1983,

pp.235-240

III

[6] APL2
A P L

Programming: Language Reference,

SHZO-9227, IBM Corporation, 1984

3EOO 4DOO 4900

Figure 6. Two Character Data Formats

M. Udo

PL II 4D 49

334 Japanese APL Language System

